
Part 1



Source: Reddit

You don't have to remember 
every single R command. 

Feel free to Google it when you 
need to!



Data science with R workflow

Source: R for Data Science



R & RStudio

The R programming language is widely used among statisticians and data miners for 
statistical computing and graphics. 

R is a software environment to process R programming languages.

RStudio is an integrated development environment for R programming.



If R is the engine and bare bones of your car, then RStudio is like the rest of 
the car. The engine is super critical part of your car. But in order to make 
things properly functional, you need to have a steering wheel, comfy seats, a 
radio, rear and side view mirrors, storage, and seatbelts.

RMarkdown for Scientists Nicholas Tierney

R & RStudio



R & RStudio

R interface RStudio interface



Packages

An R package is a collection of functions, data, 
and documentation that extends the capabilities 
of base R.

The packages installed are not loaded by default.

You will not be able to use the functions, objects, 
and help files in a package until you load it.

R

R packages



Packages

• tidyverse: include all the packages required in the data science workflow, ranging from data exploration 
to data visualization.
➢ Data Visualization and Exploration: ggplot2
➢ Data Wrangling and Transformation: dplyr, tidyr, stringr, forcats
➢ Data Import and Management: tibble, readr
➢ Functional Programming: purr

• lubridate: helps users to easily manipulate date and time data. It provides tools for parsing, formatting 
and manipulating dates and times.

• rtweet: collect and organize Twitter data via Twitter’s REST and stream API

• plotly: creating interactive web-based graphs via the open source JavaScript graphing library plotly. js

Source: https://www.geeksforgeeks.org/what-are-the-tidyverse-packages-in-r-language/



Resources

https://posit.cloud/

Learning statistics with R -
https://learningstatisticswithr.com/book/

R for Data Science - https://r4ds.had.co.nz/

Data Visualization - https://socviz.co/

https://www. geeksforgeeksorg/

https://learningstatisticswithr.com/book/
https://r4ds.had.co.nz/
https://socviz.co/


Part 2



Plunge incentive:
Look at what this one 
script can do for you.

Specify search terms, 
dates, and sources ...



… and get the URL, pub 
date & headline for 
every matching article.

In this case, 
543 of them.

In about 4 
minutes.



Headlines autocoded
for mentions of user-
defined topic keywords.



A headline word 
frequency analysis to 
help identify topics.



A graph showing each 
topic’s daily volume 
across the period 
searched. Plus …



… “mouse over” 
interactivity, and …



… “mouse over” 
interactivity, and …

… zoomability.

(And customizable 
colors.)



A graph of the same 
data, but by week …



… the number of 
articles captured, by 
source …



… and the data, exported as a .csv 
file automatically named after 
your search terms and date range.



Retrieve data for as 
many articles as you 
want, back to 2017 …

… about any topic you 
can devise search terms 
for …

… published in any 
indexed source, 
regardless of country or 
language … … for free.



Data come from GDELT, 
the Global Database of 
Events, Language and 
Tone. 

Google Scholar lists 
about 385 articles citing 
GDELT in the last year.



The script has 247 lines 
of R code.

But you can start using 
it today if you can learn 
how to tweak fewer 
than a dozen of them.



The “query” line is where you specify your 
search terms.



Incidentally, all hints I’ll go over are 
covered in the script’s companion 
web page.

See:
https://rpubs.com/drkblake/1007551

Also there: A full copy of the script.

You can have a copy of this 
PowerPoint, too.

https://rpubs.com/drkblake/1007551


Specify a “startdate” for your search in 
YYYYMMDD format.

Specify an “enddate” in the same way.



Add as many sources as you like, using the root 
of the source’s web address.

Punctuation matters … a lot. 



The bigger your date range and source list, 
the more time the query will take. 

Running this code will give you an estimate 
of the time required.



This code starts a “loop” 
that sends the GDELT 
API a request – one at a 
time – for each search 
terms/source/date/ 
combination.

Each result shows here 
as the loop runs.



Each iteration adds data 
to the “Headlines” data 
frame.

Stop the loop, and 
“Headlines” will contain 
all data collected so far.



After the loop, a built-in 
process deletes any 
duplicate records.



This code will show you 
the number of articles 
retrieved per source.

1

2
The %>% operator (from 
the dplyer package) 
basically means “and 
then …”

After the code runs, 
click this tab to see the 
summary.



This code deletes 
common “stop words” 
from the headline word 
count.



You can add custom 
stop words here.



Sorted headline word 
counts are under this 
tab, and they look like 
this.



On the Headlines tab, 
you can filter the 
headlines by keyword to 
explore how each 
keyword is used.

1 2

Here, you see that many 
– but not all – headlines 
mentioning 
“documents” are about 
Biden’s “classified 
documents.”



The same method 
shows than “Jan. 6” will 
flag headlines about the 
Jan. 6 capitol riot.

A mouse hover will 
show you the full text of 
any cell.



You can then customize 
this code to categorize 
headlines by keywords.

Here, a headline gets a 
“1” if it mentions 
“trump” or “maga” & a 
“0” if it doesn’t.

The codes end up stored 
in a dataset column 
called “Trump.”



“Or,” represented by a 
“|” character, is the only 
Boolean operator 
available, here.

But the search is string-
based. For example, 
“trump” will find 
“Trump” but also 
“Trump’s,” “Trumpism,” 
“Trumpian,” etc.



Replicate the code –
with those two aspects 
altered – for each 
headline categorization 
you want to do.

This code creates a 
column called 
“Republicans” …

… and codes it as a “1” if 
the headline includes 
any of these terms.



Also, be sure each headline 
categorization column’s name 
gets added to the chart code, 
along with …



Also, be sure each headline 
categorization column’s name 
gets added to the chart code, 
along with …

… labels for the 
chart’s legend.



Edit these color codes to change 
the chart’s colors. I used a palette 
from Coolors.co.



Lots of options 
are available.Edit these color codes to change 

the chart’s colors. I used a palette 
from Coolors.co.



Once made, the chart 
can be copied, exported 
as .html, or published 
(for free) on RPubs.



Here’s what the script looks like in action …

Video also at:
drkblake.com/dive-headfirst-into-r






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

